Каталог
ZV
ездный б-р, 19
+7 (495) 974-3333 +7 (495) 974-3333 Выбрать город: Москва
Подождите...
Получить токен
Соединиться
X
Сюда
Туда
x
Не выбрано товаров для сравнения
x
Корзина пуста
Итого: 
Оформить заказ
Сохранить заказ
Открыть корзину
Калькуляция
Очистить корзину
x
Главная
Магазины
Каталог
Мои заказы
Корзина
Магазины Доставка по РФ
Город
Область
Ваш город - ?
От выбранного города зависят цены, наличие товара и
способы доставки

Понедельник, 20 июня 2016 15:33

Тайминги

короткая ссылка на новость:
#Тайминги #CL
  1. Введение
  2. Тайминги
  3. CAS Latency (CL)
  4. Задержка от RAS до CAS (RAS to CAS Delay [tRCD])
  5. RAS Precharge (tRP)
  6. Другие параметры

Введение

Модули памяти DDR и DDR2 классифицируются по максимальной частоте, на которой они могут работать. Но, помимо частоты, есть и другие параметры, определяющие производительность памяти – это тайминги. Тайминги – это числа, такие как 2-3-2-6-T1, 3-4-4-8 или 2-2-2-5, чем меньше числа, тем лучше. Давайте разберемся, что обозначает каждая цифра этих чисел.

Модули памяти DDR и DDR2 маркируются по классификации DDRxxx/PCyyyy.

Первое число – xxx – указывает максимальную тактовую частоту, на которой могут работать чипы памяти. Например, максимальная частота, на которой могут работать модули DDR400 – 400 МГц, а модули DDR2-667 могут работать на частотах до 667 МГц. Нужно уточнить, что это не реальная тактовая частота ячеек памяти – их рабочая частота в случае с DDR равна половине, а DDR2 - четверти частоты, указываемой в маркировке модулей. То есть, модули памяти DDR400 работают на частоте 200 МГц, а модули DDR2-667 на частоте 166 МГц, но с контроллером памяти и DDR, и DDR-II сообщаются на половине частоты, указанной в маркировке (т.е. 200 и 333МГц, соотвественно), поэтому в дальнейшем именно такая частота будет подразумеваться под реальной рабочей.

Второе число – yyyy – указывает максимальную скорость передачи данных в МБ/с.

Максимальная скорость передачи данных у модулей DDR400 равна 3200 МБ/с, следовательно, их маркируют PC3200. Модули DDR2-667 передают данные со скоростью 5336 МБ/с, и их маркируют как PC2-5400. Как видите, после “DDR” или "PC" мы ставим цифру "2", чтобы указать, что речь идет о памяти DDR2, а не DDR.

Первая классификация – DDRxxx – является стандартной для классификации чипов памяти, вторая – PCyyyy – для модулей памяти. На рисунке 1 представлен модуль памяти PC2-4200 компании Corsair, который сделан на чипах DDR2-533.


Модуль памяти DDR2-533/PC2-4200

Максимальную рабочую частоту модуля памяти можно рассчитать по следующей формуле:

максимальная теоретическая скорость передачи данных = тактовая частота x число битов / 8

Так как DIMM модули передают одновременно 64 бита, то “число битов” будет 64. Так как 64 / 8 равно 8, то эту формулу можно упростить:

максимальная теоретическая скорость передачи данных = тактовая частота x 8

Если модуль памяти установлен в компьютере, шина памяти которого работает на более низкой тактовой частоте, то максимальная скорость передачи данных у этого модуля памяти будет ниже его максимальной теоретической скорости передачи данных. На практике непонимание этого факта встречается довольно часто.

Например, Вы купили 2 модуля памяти DDR500/PC4000. Даже при том, что они маркированы как DDR500, в вашей системе они не будут автоматически работать на частоте 500 МГц. Это максимальная тактовая частота, которую они поддерживают, но она не всегда совпадает с той тактовой частотой, на которой они будут работать. Если Вы установите их в обычный персональный компьютер, поддерживающий модули DDR, то эти модули памяти будут работать на частоте 400 МГц (DDR400) – максимальной частоте стандарта DDR. При этом максимальная скорость передачи данных будет равна 3200 МБ/с (или 6400 МБ/с, если модули памяти работают в двухканальном режиме). Таким образом, модули не будут автоматически работать на частоте 500 МГц, и не достигнут скорости передачи данных в 4000 МБ/с.

Зачем же, в таком случае, такие модули покупают? Для разгона. Так как изготовитель гарантирует, что эти модули могут работать на частотах до 500 МГц, Вы знаете, что можно поднять частоту шины памяти до 250 МГц, и таким образом увеличить быстродействие компьютера. Но это можно будет сделать при условии, что материнская плата компьютера поддерживает такой разгон. Поэтому, если Вы не хотите «разгонять» свой компьютер, то бесполезно покупать модули памяти с маркировкой по тактовой частоте выше, чем обычная частота шины памяти материнской платы.

Для среднего пользователя этой информации о модулях памяти DDR/DDR2 достаточно. Продвинутому же пользователю нужно знать ещё об одной характеристике: темповости работы памяти, или, как ещё называют совокупность временных параметров работы памяти – тайминги, задержки или латентность. Рассмотрим эти параметры модулей памяти подробнее.


Тайминги

Именно из-за разницы в таймингах, 2 модуля памяти, имеющие одну и ту же теоретическую максимальную скорость передачи данных, могут иметь разную пропускную способность. Почему так может быть, если оба модуля работают на одной и той же частоте?

Для выполнения каждой операции чипу памяти нужно вполне определенное время – тайминги как раз и определяют это время, выраженное в количестве циклов тактовой частоты шины памяти. Приведем пример. Рассмотрим самый известный параметр, который называют CAS Latency (или CL, или "время доступа"), который указывает, через сколько тактовых циклов модуль памяти выдает запрошенные центральным процессором данные. Модуль памяти с CL 4 запоздает с ответом на 4 тактовых цикла, тогда как модуль памяти с CL 3 запаздывает на 3 тактовых цикла. Хотя оба модуля могут работать на одной и той же тактовой частоте, второй модуль будет работать быстрее, поскольку он будет выдавать данные быстрее, чем первый. Эта проблема известна под названием "время ожидания".

Тайминги памяти обозначаются рядом чисел, например, так: 2-3-2-6-T1, 3-4-4-8 или 2-2-2-5. Каждое из этих чисел указывают, за сколько тактовых циклов память выполняет определенную операцию. Чем меньше эти числа, тем быстрее память.


DDR2 модуль памяти с таймингами 5-5-5-15

Числа таймингов указывают параметры следующих операций: CL-tRCD-tRP-tRAS-CMD. Чтобы было понятнее, представьте себе, что память организована в виде двумерной матрицы, где данные хранятся на пересечении строк и столбцов.

CL: CAS Latency – время, проходящее с момента посыла команды в память до начала ответа на этот запрос. То есть это время, которое проходит между запросом процессора некоторых данных из памяти и моментом выдачи этих данных памятью.

tRCD: задержка от RAS до CAS – время, которое должно пройти с момента обращения к строке матрицы (RAS), до момента обращения к столбцу матрицы (CAS), в которых хранятся нужные данные.

tRP: RAS Precharge – интервал времени с момента закрытия доступа к одной строке матрицы и началом доступа к другой строке данных.

tRAS – пауза, которая нужна памяти, чтобы вернуться в состояние ожидания следующего запроса.

CMD: Скорость поступления команды (Command Rate) – время с момента активации чипа памяти до момента, когда можно будет обратиться к памяти с первой командой. Иногда этот параметр не указывается. Обычно это T1 (1 тактовый цикл) или T2 (2 тактовых цикла).

Обычно у пользователя есть 2 возможности. При конфигурации компьютера использовать стандартные тайминги памяти. В большинстве случаев для этого при настройке материнской платы в пункте конфигурации памяти нужно выбрать параметр "авто". Можно также вручную сконфигурировать компьютер, выбрав более низкие тайминги, что может увеличить производительность системы. Нужно заметить, что не все материнские платы позволяют изменять тайминги памяти. Кроме того, некоторые материнские платы могут не поддерживать очень низкие тайминги, из-за чего они могут сконфигурировать ваш модуль памяти так, что он будет работать с более высокими таймингами.

Конфигурирование таймингов памяти в настройках материнской платы

При разгоне памяти может случиться так, что для того, чтобы система работала устойчиво, вам, возможно, придется в настройках увеличить тайминги работы памяти. Вот здесь-то и могут быть очень интересные ситуации. Даже при том, что частота памяти будет поднята, из-за увеличения задержек в работе памяти её пропускная способность может уменьшиться.

В этом ещё одно преимущество скоростных модулей памяти, ориентированных на разгон. Помимо гарантии работы модуля памяти на маркированной тактовой частоте, изготовитель также гарантирует, что при этом Вы сможете сохранить паспортные тайминги модуля.

Возвращаясь к примеру с модулем памяти DDR500/PC4000 – даже при том, что с модулями DDR400/PC3200 Вы сможете достичь частоты в 500 МГц (250 МГц x2), для них, возможно, придется увеличить тайминги, в то время как для модулей DDR500/PC4000 изготовитель гарантирует, что Вы сможете достичь 500 МГц, сохранив указанные в маркировке тайминги.

Далее – рассмотрим в деталях все параметры, из которых состоят тайминги.


CAS Latency (CL)

Как уже упоминалось выше, CAS Latency (CL) является очень важным параметром памяти. Он указывает, сколько тактовых циклов нужно памяти для выдачи запрашиваемых данных. Память с CL = 3 задержится с ответом на 3 тактовых цикла, а память с CL = 5 сделает то же самое только через 5 тактовых циклов. Таким образом, из двух модулей памяти, работающих на одной и той же тактовой частоте, тот модуль, у которого CL меньше, будет быстрее.

Обратите внимание, что здесь под тактовой частотой имеется в виду реальная тактовая частота, на которой работает модуль памяти – то есть половина указываемой частоты. Так как память DDR и DDR2 за один тактовый цикл может выдавать данные 2 раза, то для них указывается двойная реальная тактовая частота.

На рисунке 4 показан пример работы CL. На нем приведены 2 примера: для модуля памяти с CL = 3 и модуля памяти с CL = 5. Синим цветом обозначена команда "читать".

CAS Latency (CL)

Память с CL = 3 обеспечивает 40% преимущество по времени ожидания по сравнению с памятью с CL = 5, считая, что они обе работают на одной тактовой частоте.

Можно даже вычислить время задержки, после которого память начнет выдавать данные. Период каждого тактового цикла можно легко вычислить по следующей формуле:

T = 1 / f

Таким образом, период одного тактового цикла памяти DDR2-533, работающей на частоте 533 МГц (частота шины – 266,66 МГц) равен 3,75 нс (нс = наносекунда; 1 нс = 0,000000001 с). Имейте в виду, что при расчетах нужно использовать реальную тактовую частоту, которая равна половине номинальной частоты. Таким образом, память DDR2-533 задержит выдачу данных на 18,75 нс, если CL =5, и на 11,25 нс, если CL =3.

Память SDRAM, DDR и DDR2 поддерживает пакетный режим выдачи данных, когда задержка перед выдачей следующей порции данных составляет всего один тактовый цикл, если эти данные располагаются по адресу, следующему за текущим адресом. Поэтому, в то время как первые данные выдаются с задержкой на CL тактовых циклов, следующие данные будут выдаваться сразу же за первыми, не задерживаясь ещё на CL циклов.


Задержка от RAS до CAS (RAS to CAS Delay [tRCD])

Каждый чип памяти внутренне организован как двумерная матрица. В каждом пересечении строк и столбцов имеется маленький конденсатор, который отвечает за сохранение “0” или “1” – единиц информации, или данных. Процедура доступа к хранящимся в памяти данным состоит в следующем: сначала активируется строка с нужными данными, затем столбец. Эта активация происходит по двум контрольным сигналам – RAS (Row Address Strobe) и CAS (Column Address Strobe). Чем меньше временной интервал между этими двумя сигналами, тем лучше, поскольку данные будут считываться быстрее. Это время называется задержкой от RAS до CAS (RAS to CAS Delay [tRCD]). Это иллюстрирует рисунок 5 – в данном случае для памяти с tRCD = 3.

RAS to CAS Delay (tRCD)

Как видите, задержка от RAS до CAS является также числом тактовых циклов, проходящих с момента прихода команды “Active” (активировать) до команды "чтение" или "запись".

Как и в случае с CAS Latency, RAS to CAS Delay имеет дело с реальной тактовой частотой (которая равна половине маркировочной частоты), и чем меньше этот параметр, тем быстрее работает память, так как в этом случае чтение или запись данных начинается быстрее.


RAS Precharge (tRP)

После получения данных из памяти, нужно послать в память команду Precharge, чтобы закрыть строку памяти, из которой считывались данные, и разрешить активацию другой строки. RAS Precharge time (tRP) – временной интервал между командой Precharge и моментом, когда память сможет принять следующую команду активации – Active. Как мы узнали в предыдущем разделе, команда “active” запускает цикл чтения или записи.

RAS Precharge (tRP)

На рисунке 6 приведен пример для памяти с tRCD = 3.

Как и в случае с другими параметрами, RAS Precharge имеет дело с реальной тактовой частотой (которая равна половине маркировочной частоты), и чем меньше этот параметр, тем быстрее работает память, так как в этом случае команда “active” поступает быстрее.

Суммируя рассмотренное выше, получаем, что время, которое проходит с момента выдачи команды Precharge (закрыть строку и …) до фактического получения данных процессором равно tRP + tRCD + CL.


Другие параметры

Рассмотрим 2 других параметра – Active to Precharge Delay (tRAS) и Command Rate (CMD). Как и в случае с другими параметрами, эти 2 параметра имеют дело с реальной тактовой частотой (которая равна половине маркировочной частоты), и чем меньше эти параметры, тем быстрее память.

Active to Precharge Delay (tRAS): если в память поступила команда “Active”, то следующая команда “Precharge” не будет восприниматься памятью, пока не пройдет время равное tRAS. Таким образом, этот параметр определяет временной предел, после которого память может начать считывать (или записывать) данные из другой строки.

Command Rate (CMD) – отрезок времени с момента активации чипа памяти (прихода сигнала на вывод CS – Chip Select [выбор чипа]) до того как чип сможет принять какую-нибудь команду. Этот параметр обозначается буквой “T” и может принимать значения 1Т или 2T – 1 тактовый цикл или 2 тактовых цикла, соответственно.

Источник: www.hardwaresecrets.com

подписаться   |   обсудить в ВК   |